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Abstract

The craniocervical junction (CCJ) is comprised of the inferior surface of the skull, the atlas 
and axis, as well as muscles and connective tissues that atach the skull to the cervical 
spine. The CCJ encloses the central nervous system (CNS), encephalic vasculature and 
the cerebrospinal luid (CSF) system. The CCJ spans the brainstem to the spinal cord, 
including the vascular system as well as connecting the cerebrospinal luid (CSF) cisterns 
within the skull to the CSF channels in the spinal canal. Malformation and misalignment 
of the craniocervical junction can cause a constellation of cerebral and other neurological 
signs and symptoms collectively called craniocervical syndrome (CCS). The signs and 
symptoms of craniocervical junction syndrome may be due to mechanical strain causing 
deformation of dura mater, vasculature and other structures of the cranial vault result-
ing in irritation of and dysfunction of afected tissues. Deformation of the CCJ may also 
obstruct blood and CSF low. Chronic ischemia, edema and hydrocephalus can cause 
degenerative cascades that can in turn lead to neurodegenerative diseases.

Keywords: craniocervical junction, hydrocephalus, ligament disruption, CFS low,  
CSF obstruction, cerebellar tonsillar ectopia, brain stem compression, IGAT,  
image guided atlas treatment

1. Anatomy of the craniocervical junction

The cervical spine is made up of seven vertebrae divided into upper and lower sections. The 

upper cervical spine includes the irst two vertebrae, classically named atlas (C1) and axis 
(C2). The CCJ links the skull to the upper cervical spine and therefore the foramen magnum 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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to the spinal canal. The atlas is essentially a ring of bone formed by two arches that are lanked 
and joined by the lateral masses, which contain the superior and inferior facets [1].

The transverse processes of the atlas are atached to the lateral masses and contain the inter-

transverse foramina. The intertransverse foramina of the cervical spine form a lexible protec-

tive tunnel for the passage of the vertebral arteries. The alignment of occiput (C0) with the 

atlas and axis is crucial to the integrity and functional architecture of the spinal cord and mid 

brain structures [2]. Like the entire spine, this connection is primarily ligamentous and mem-

branous in nature. The atlantoaxial joint (C1–2) is arguably the most unique and complex of 
all spinal intersegmental relationships. The relative horizontal to biconvex orientation of the 

opposing weight-bearing facets allows excellent rotation at the expense of osseous stability [3]. 

The transverse band of the cruciate ligament arises from tubercles on the atlas lateral masses 

and stretches across and behind the dens of C2 holding the odontoid process (dens) against the 

anterior arch preventing migration of the dens into the spinal canal [4–6].

The alar ligaments are much larger and stronger than the apical or accessory ligaments. 

Damage to the alar ligaments can cause joint instability and excess motion [7]. Excess motion 

can lead to kinking or compression of the vertebral arteries and irritation of nociceptor and 

mechanoreceptors, which may play a role in symptoms such as headache, neck pain and diz-

ziness associated with head/neck trauma and whiplash-type injuries (Figure 1).

The anterior and posterior spinal longitudinal ligaments (ALL and PLL) are major stabilizers of 

the anterior and middle columns of the entire spinal axis [8]. The posterior longitudinal ligament 

transcends into what becomes the anterior dura-mater/tectorial “membrane” complex cephalad 

to the mid C2 vertebral body (the longitudinal collagenous architecture of the tectorial “mem-

brane” is indistinguishable from the posterior longitudinal “ligament”). The ALL and PLL are two 

“paired” ligaments known as the suboccipital stabilizers to lexion and extension stress [9, 10]. The 

capsular ligaments stabilize the facet joints by limiting lexion and rotation (Figure 2) [11].

Figure 1. Coronal illustration of the ligamentous stabilizers of the Cranio-cervical junction.
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The tectorial membrane is a continuation of the posterior longitudinal ligament and ultimately 

coalesces with the periosteum lining along the anterior margin of the foramen magnum at the 

basion [6, 12, 13]. The Tectorial Membrane (TM) plays a substantial role in stabilizing the 
cranio-cervical junction, especially by limiting lexion. During head/neck trauma, hyperex-

tension/hyperlexion and translation take place at the cranio-cervical junction. Hyperlexion 
alone or combined with anterior translation is the presumed mechanism for injury/damage to 

the TM (Figures 3 and 4) [14].

Grading of ligament disruption is as follows:

1. Partial thinning involving less than 1/3rd the width of the TM (grade I lesion) can represent 
a normal variant,

2. Lesions involving up to 2/3rd’s of the width (grade II) may be seen as a consequence of 
head/neck trauma and or repetitive micro-stress.

3. Complete absence of or disruption of greater than 2/3rds of the membrane (grade III le-

sion), accompanied by a normal or partially ruptured dura mater, has not been described 

in the normal patient population [15].

Weakening and disruption of the key stabilizers of the CCJ can lead to a head forward posture 

resulting in loss or reversal of the cervical lordosis. This straightening efectively lengthens 
the spinal canal. The dentate ligaments stabilize the position of the spinal cord in the center 

of the spinal canal. The spinal cord subsequently can become tethered to each spinal segment 
by way of the dentate ligaments, and such loss of the cervical lordosis may create traction 

on the spinal cord resulting in a caudal downward pulling of the brain and cranial elements  

(brainstem/cerebellar tonsils) downward into the foramen magnum [16, 17]. This can result in 

Figure 2. Disruption of the alar ligaments.
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Figure 4. Disruption of the tectorial membrane.

Figure 3. Sagital illustration of the ligamentous stabilizers of the Cranio-cervical junction.
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an acquired cerebellar tonsillar ectopia, which can interfere with the cerebral spinal luid low 
of CSF, resulting in a disequilibration of arterial and venous low while degrading the nutri-
tive, restorative and support function of the CSF for the central nervous system (Figure 5) [18].

Rotary misalignments of C1–2 can impair the normal CSF low as well as contributing to an 
insuiciency of blood low of the vertebro-basillar system (Figure 6).

A tortuous vertebral artery may be visible on MRI imaging. Pulsatile compression of the brain 
stem by the vertebral artery is associated with cerebellar dysfunction, hydrocephalus, ischemic  

Figure 5. Brain stem compressed by the right vertebral artery. Low cerebellar tonsils.

Figure 6. Rotary misalignment of atlas (C1) and axis (C2).
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stroke, transient or permanent motor deicits, central sleep apnea, trigeminal neuralgia, as 
well as brain stem compression syndrome [19–21].

FONAR upright weight bearing MRI has been shown to be most sensitive in detecting cer-

ebellar tonsillar ectopia since weight- bearing posture presents the cerebellar tonsils further 

distended into the foramen magnum [18]. Visualization of misalignment of the craniocervical 

junction and its efects on the nervous system is also demonstrated when images are acquired 
under the efects of gravity. Imaging of the sagital, coronal and axial planes ensure a fulsome 
evaluation of the adequacy of the foramen magnum and provides good sensitivity in the 
evaluation of the cerebellar tonsils (Figures 7–10).

Figure 7. Normal position of cerebellar tonsils.

Figure 8. Cerebellar tonsillar ectopia.

Hydrocephalus: Water on the Brain32



2. CSF low

In 1891, Chiari discovered anomalies involving the cerebellar tonsils while performing postmortem 
examinations on children and adolescents with cerebral hydrocephalus. He recognized that the 
size of these structural defects in the brain was not related to the severity of the hydrocephalus [18].

The classic deinition of Chiari malformation is herniation of the cerebellar tonsils 3 to 5 mm 
below the foramen magnum. This excess tissue in the upper cervical spinal canal creates pressure 

and disrupts the low of cerebrospinal luid (CSF). Blocked spinal luid can cause hydrocephalus 
or, as is more common in Chiari malformation, a luid-illed cyst known as a syrinx [22].

Figure 10. Bilateral cerebellar tonsillar ectopia demonstrated on the coronal view (left) and on the axial view (right).

Figure 9. Coronal view demonstrating misalignment of C0-C1 with left cerebellar tonsillar ectopia.
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Spinal integrity may be restored through reduction of misalignments at the cranio-cervical 

junction. Image Guided Atlas Treatment (IGAT tm) has been shown to be efective at restoring 
CSF low reducing and reversing the neurodegenerative cascade [23].

Image-Guided Atlas Treatment (IGAT) utilizes dynamic upright MRI imaging sequences in 
order to permit proper visualization of the CCJ misalignments (Figure 11).

Cerebrospinal luid (when unencumbered) contains low-molecular weight chelating agents 
that remove metal atoms from the interstitial spaces of the brain and spinal cord, as well 

as from neurons and glial cell membranes. Abnormal iron deposition is a consequence of 
the cascade of malevalence associated with cerebellar ectopia induced CSF stasis [24]. What 

is equally surprising, if not more so, is the fact that ferromagnetic mineral magnetite (Fe3 
O4) crystals are formed biochemically as a manifestation of normal brain tissue metabolism. 
Parkinson’s and Alzheimer’s diseases may by induced by toxic build-up of heavy metals-

within the basal ganglia in the case of Parkinson’s, and in the cortical and sub-cortical regions 

of the brain in the case of Alzheimer’s disease (Figure 12).

With the cascade of CSF pathophysiology induced by cerebellar tonsilar ectopia, there is com-

promise of the total encephalic venous outlow due to obstruction of the venous system that 
cannot be adequately shunted from the cranial vault. Portions of the supericial venous sys-

tem draining the frontal, parietal, temporal, and occipital lobes are also drained by direct con-

nections into the transverse sinuses and the middle cerebral veins. The inability to redistribute 

or disperse the obstructed supericial venous outlow results in intracerebral venocongestion, 
leading to loss of intracerebral compliance thereby decreasing intracerebral blood low.

Review of available data provides a reasonable model of cerebral venous outlow that, when 
used in conjunction with our understanding of arterial blood supply and CSF dynamics, may 
explain much of the pathophysiology of hydrocephalus [25].

Simultaneous obstruction of both the “principal” and “collateral venous outlow” tracts (as 
an indirect result of cerebellar tonsillar ectopia) can lead to elevated venous pressure and 

Figure 11. Disruption of CSF low (left) with restoration of normal low post IGAT (right) on phase contrast cine CSF 
low MR.
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eventually to insuiciency of cerebral blood low (CBF). With increased intracranial pressure 
(and decreasing intracranial compliance), ventricular enlargement may occur due to atrophy 

of the periventricular white mater.

Cerebrospinal luid shunting (surgically) results in an initial increase in CBF as the essential 
therapeutic efect in treating patients with hydrocephalus, but ultimately CSF shunting pre-

cipitates venocongestive brain edema, which helps explain the reduced ventricular size along 

with the known side efects of shunting [26].

Upright Ciné MRI of the cranio-cervical junction demonstrates CSF low dynamics. MRI exam-

ination of the brain reveals subtle structural defects in addition to any obvious tonsillar ectopia.

Subtle deformities within the posterior fossa, with or without frank herniation, can be more 

problematic in their efect on brain function than a large but simple ectopia that leaves room 
for normal luid low. This explains why short, thick cerebellar tonsils that barely plug the 
foramen magnum can cause a serious impediment, while a longer herniation that is thin or 

peg-shaped sometimes may cause few problems [27]. The encroachment of the cerebellar ver-

mis and tonsils on the foramen magnum disturbs the CSF low paterns, thereby precipitating 
headaches and other neurological symptoms [25–32].

3. Radiological features

Imaging studies of the cranio-cervical junction, particularly standard MRI, lacks sensitivity 
when viewing the CCJ ligaments for signs of sub-failure. X-ray based imaging (conventional 

radiographs, luoroscopy and CT), do not show ligament tears, particularly when chronic 
scarring replaces the “thickness” of the normal cable-like arrangement of collagen in healthy 

ligaments [33, 34]. Intraligamentous heme is released when ligaments are torn, creating a 

Figure 12. Obstructed efusion of CSF from the cranium may result in pooling and stasis (left). Correction of spinal 
misalignment results in improved CFS low (right).
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susceptibility artifact, particularly on T2 weighted images, making the torn ligament appear 

“normal” (uniform, hypointense, “dark” signal with uniform thickness) [35]. With proper 

MRI sequences, such as “Proton Density” thin section data sets, the “gray” intermediate 
signal indicative of ligamentous disruption can be contrasted by a background of adjacent 

“brighter” CSF (versus intermediate signal with T1 weighting) [36].

Standard T1 W and T2 W CCJ MRI protocols with 5- to 7-mm-thick slices are insuicient 
to demonstrate such membrane/ligament lesions [37]. Sections 2–3 mm thick give adequate 
spatial resolution with an adequate signal-to-noise ratio. The low membrane/ligament signal 
aforded by proton density (PD)-weighted images provide beter delineation from both CSF 
and adjacent soft tissues compared to the standard T1- and T2-weighted sequences that typi-
cally comprise standard cervical MRI studies [38].

On T1-weighted images, ligaments are not as well deined because a damaged ligament and 
the surrounding edema/inlammation and adjacent CSF will all be ‘gray’, or intermediate in 
T1 signal [15]. However, with the PD sequence (especially with fat suppression) the edema/
inlammation and CSF become hyperintense (increased in PD signal) while depicting intact 
ligaments as relatively hypointense (lower) signal. The reason PD-weighted images are not 
routinely used to replace the standard T1-weighted images (on current C-spine protocols) is 
that PD can “miss” medullary space lesions [39].

In hyperlexion trauma, all posterior cervical ligaments and membranes are subjected to strain 
forces. When the atlanto-occipital membrane is stretched beyond its elastic limit, these forces 

are transmited to the adjacent dura mater. The rupture of the later indicates a sprained/
injured membrane.

4. Kinematic imaging of the craniocervical junction

The complex nature of the structure and function of the craniocervical junction makes it espe-

cially vulnerable to injury and deformation. Forces acting upon the head and cervical spine as 
occurs in head/neck trauma, may occur in complex paterns [40]. Accordingly, it is important 

to ensure that complex injuries are properly evaluated and are not overlooked as complex 

injury scenarios are plausible when trauma occurs to the craniocervical junction [41].

Acknowledgements

The authors would like to acknowledge Dr. Michael Flanagan’s numerous contributions to 
the literature and his seminal writings on the anatomy of the craniocervical junction and the 

role of cerebrospinal luid in brain function and health. htps://uprightdoctor.wordpress.com/
about-dr-michael-lanaga/

Special thanks to Ron Tribell and Axis Medical Illustrations for the illustrations at Figures 1, 

3, 7 and 8.

Hydrocephalus: Water on the Brain36



Author details

Scot Rosa1*, John W. Baird2, David Harshield3 and Mahan Chehrenama4

*Address all correspondence to: drscotrosa@hvc.rr.com

1 Private Practice, Rock Hill, NY, USA

2 Private Practice, Markham, ON, Canada

3 Private Practice, Litle Rock, AR, USA

4 Private Practice, McLean, VA, USA

References

[1] Cone RO, Flournoy J, MacPherson R. The craniocervical junction. Radiographics. 1981;1(2)

[2] Kao SC, Waziri MH, Smith WL, Sato Y, Yuh WT, Franken EA Jr. MR imaging of the 
Craniovertebral junction, cranium, and brain in children with Achondroplasia. American 

Journal of Roentgenology. 1989 Sep;153(3):565-569

[3] Clark CR, Ducker TB. Cervical Spine Research Society Editorial Commitee. The Cervical 
Spine. 3rd ed. Philadelphia, PA: Lippincot-Raven; 1998. p. 1003

[4] Penning L, Wilmink JT. Rotation of the cervical spine: A CT study in normal subjects. 

Spine. 1987;12:732-738

[5] White AA III, Johnson RM, Panjabi MM, Southwick WO. Biomechanical analysis of clini-
cal stability in the cervical spine. Clinical Orthopaedics. 1975:85-96

[6] Bogduk N, Mercer S. Biomechanics of the cervical spine, I: Normal kinematics. Clinical 
Biomechanics (Bristol, Avon). 2000;15:633-648

[7] Dvorak J, Panjabi M, Gerber M, Wichmann W. CT-functional diagnostics of the rota-

tory instability of upper cervical spine, 1: An experimental study on cadavers. Spine. 
1987;12:197-205

[8] Monu J, Bohrer SR, Howard G. Some upper cervical spine norms. Spine. 1987;12:515-519

[9] Bohrer SR, Chen YM, Sayers DG. Cervical spine lexion paterns. Skeletal Radiology. 
1990;19:521-525

[10] Davis SJ, Teresi LM, Bradley WG, Ziemba MA, Bloze AE. Cervical spine hyperextension 
injuries: MR indings. Radiology. 1991;180:245-251

[11] Green JD, Harle TS, Harris JH. Anterior subluxation of the cervical spine. AJNR. 1981; 
2:243-250

Craniocervical Junction Syndrome: Anatomy of the Craniocervical and Atlantoaxial Junctions…
http://dx.doi.org/10.5772/intechopen.72890

37



[12] Tubbs RS, Hallock JD, Radclif V, et al. Ligaments of the craniocervical junction. Journal 
of Neurosurgery. Spine. 2011;14:697-709

[13] Panjabi M, Dvorak J, Crisco J III, Oda T, Hilibrand A, Grob D. Flexion, extension, and 
lateral bending of the upper cervical spine in response to alar ligament transections. 

Journal of Spinal Disorders. 1991;4:157-167

[14] Krakenes J, Kaale BR, Moen G, Nordli H, Gilhus NE, Rorvik J. MRI of the tectorial and pos-

terior atlanto-occipital membranes in the late stage of whiplash injury. Neuroradiology. 

2003;45:585-591

[15] Krakenes J, Kaale BR, Moen G, et al. MRI assessment of the alar ligaments in the late 
stage of whiplash injury-a study of structural abnormalities and observer agreement. 

Neuroradiology. 2002;44:617-624

[16] Tubbs RS1, Salter G, Grabb PA, Oakes WJ. The denticulate ligament: Anatomy and func-

tional signiicance. Journal of Neurosurgery. 2001 Apr;94(2 Suppl):271-275

[17] Grostic JD. Dentate ligament-cord distortion hypothesis. Chiropr Res J. 1988;1(1):47-55

[18] Freeman MD, Rosa S, Harshield D, Smith F, Bennet R, Centeno CJ, Kornel E, Nystrom A,  
Hefez D, Kohles SS. A case-control study of cerebellar tonsillar ectopia (Chiari) and 
head/neck trauma (whiplash). Brain Injury. 2010;24(7-8):988-994

[19] Ubogu EE, Zaidat OO. Vertebrobasilar dolichoectasia diagnosed by magnetic reso-

nance angiography and risk of stroke and death: A cohort study. Journal of Neurology, 

Neurosurgery, and Psychiatry. 2004;75:22-26

[20] Tomasello F, Alafaci C, Salpietro FM, Longo M. Bulbar compression by an ectatic verte-

bral artery: A novel neurovascular construct relieved by microsurgical decompression. 

Neurosurgery. 2005;56:117-124

[21] Milandre L, Bonnefoi B, Pestre P, Pellissier JF, Grisoli F, Khalil R. Vertebrobasilar arte-

rial dolichoectasia: Complications and prognosis. Revue Neurologique (Paris). 1991; 
147:714-722

[22] Chiari Conundrum. JAMA (2009-01-14). Chiari conundrum: Researchers tackle a brain 
puzzle for the 21st century. Rebecca Voelker JAMA. 2009;301(2):147-149

[23] Rosa S, Baird JW. The Craniocervical Junction: Observations Regarding the Relationship 
between Misalignment, Obstruction of Cerebrospinal Fluid Flow, Cerebellar Tonsillar 
Ectopia, and Image-Guided Correction. Basel, Karger: The Craniocervical Syndrome 

and MRI; 2015. pp. 48-66

[24] Upledger J. The Expanding Role of Cerebrospinal Fluid in Health and Disease. Cranio-
sacrally Speaking Massage Today; March 2002

[25] Sakka L, Coll G, Chazal J. Anatomy and physiology of cerebrospinal luid. European 
Annals of Otorhinolaryngology, Head and Neck Diseases. 2011;128:309-316

[26] Andeweg J. Intracranial venous pressures, hydrocephalus and efects of cerebrospinal 
luid shunts. Child’s Nervous System. October 1989;5(5):318-323 (2005), 1-4

Hydrocephalus: Water on the Brain38



[27] Rogers SJ, Whitehead D. Chiari-1 Malformation. Factsheets for Docs-on-the-go

[28] Milhorat TH, Chou MW, Trinidad EM, Kula RW, Mandell M, Wolpert C, Speer MC. 
Chiari I malformation redeined: Clinical and radiographic indings for 364 symptom-

atic patients. Neurosurgery. 1999 May;44(5):1005-1017

[29] William B. Simultaneous cerebral and spinal luid pressure recordings. 2. Cere  
brospinal dissociation with lesions at the foramen magnum. Acta Neurochirurgica. 1981; 
59(1-2):123-142

[30] Williams HA. Unifying hypothesis for hydrocephalus, Chiari malformation, Syrin-
gomyelia, anencephaly and Spina biida. Cerebrospinal Fluid Research. 2008

[31] Kwong Y, Rao N, Latief K. Craniometric measurements in the assessment of Cranio-
vertebral setling: Are they still relevant in the age of cross-sectional imaging? American 
Journal of Roentgenology. 2011;196:421-425

[32] Milhorat TH, Bolognese PA, Nishikawa M, McDonnell NB, Francomano CA. Syndrome 
of occipitoatlantoaxial hypermobility, cranial setling, and Chiari malformation type I in 
patients with hereditary disorders of connective tissue. Journal of Neurosurgery. Spine. 

2007;7:601-609

[33] Myran R, Kvistad KA, Nygaard OP, Andresen H, Folvik M, Zwart JA. Magnetic res-

onance imaging assessment of the alar ligaments in whiplash injuries. A case-control 

study. Spine. 2008;33(18):2012-2016

[34] Borchgrevink GE, Smevik O, Nordby A, et al. MR imaging and radiography of patients 
with cervical hyperextension-lexion injuries after car accidents. Acta Radiologica. 
1995;36:425-428

[35] Ronnen H, de Korte PJ, Brink PRG, et al. Acute whiplash injury: Is there a role for MR 
imaging? A prospective study of 100 patients. Radiology. 1996;201:93-96

[36] Krakenes J, Kaale BR, Rorvik J, et al. MRI assessment of normal ligamentous structures 
in the craniovertebral junction. Neuroradiology. 2001;43:1089-1097

[37] Krakenes J, Kaale BR. MRI assessment of craniovertebral ligaments and membranes 
after whiplash trauma. Spine. 2006;31:2820-2826

[38] Pirrmann CWA, Binkert CA, Zaneti M, et al. MR morphology of alar ligaments and occip-

itoatlantoaxial joints: Study in 50 asymptomatic subjects. Radiology. 2001;218:133-137

[39] Roy S, Hol PK, Laerum LT, et al. Pitfalls of magnetic resonance imaging of alar ligament. 
Neuroradiology. 2004;46:392-398

[40] Davis JW, Phreaner DL, Hoyt DB, Mackersie RC. The etiology of missed cervical spine 
injuries. The Journal of Trauma. 1993;34:342-346

[41] Swarz EE, Floyd RT, Cendoma M. Cervical spine functional anatomy and the biomechan-

ics of injury due to compressive loading. Journal of Athletic Training. 2005;40(3):155-161

Craniocervical Junction Syndrome: Anatomy of the Craniocervical and Atlantoaxial Junctions…
http://dx.doi.org/10.5772/intechopen.72890

39




